Age | Commit message (Collapse) | Author | Lines |
|
commit d6c855caa88ddb1ab6e24e23a14b1e7baf4ba9c7 caused this
"regression", though the behavior was undefined before, overlooking
that f->shend=0 was being used as a sentinel for "EOF" status (actual
EOF or hitting the scanf field width) of the stream helper (shgetc)
functions.
obviously the shgetc macro could be adjusted to check for a null
pointer in addition to the != comparison, but it's the hot path, and
adding extra code/branches to it begins to defeat the purpose.
so instead of setting shend to a null pointer to block further reads,
which no longer works, set it to the current position (rpos). this
makes the shgetc macro work with no change, but it breaks shunget,
which can no longer look at the value of shend to determine whether to
back up. Szabolcs Nagy suggested a solution which I'm using here:
setting shlim to a negative value is inexpensive to test at shunget
time, and automatically re-trips the cnt>=shlim stop condition in
__shgetc no matter what the original limit was.
|
|
in order to produce FILE objects to pass to the intscan/floatscan
backends without any (prohibitively costly) extra buffering layer, the
strto* functions set the FILE's rend (read end) buffer pointer to an
invalid value at the end of the address space, or SIZE_MAX/2 past the
beginning of the string. this led to undefined behavior comparing and
subtracting the end pointer with the buffer position pointer (rpos).
the comparison issue is easily eliminated by using != instead of <.
however the subtractions require nontrivial changes:
previously, f->shcnt stored the count that would have been read if
consuming the whole buffer, which required an end pointer for the
buffer. the purpose for this was that it allowed reading it and adding
rpos-rend at any time to get the actual count so far, and required no
adjustment at the time of __shgetc (actual function call) since the
call would only happen when reaching the end of the buffer.
to get rid of the dependency on rend, instead offset shcnt by buf-rpos
(start of buffer) at the time of last __shlim/__shgetc call. this
makes for slightly more work in __shgetc the function, but for the
inline macro it's still just as easy to compute the current count.
since the scan helper interfaces used here are a big hack, comments
are added to document their contracts and what's going on with their
implementations.
|
|
|
|
|
|
at -Os optimization level, gcc refuses to inline these functions even
though the inlined code would roughly the same size as the function
call, and much faster. the easy solution is to make them into macros.
|
|
the immediate benefit is a significant debloating of the float parsing
code by moving the responsibility for keeping track of the number of
characters read to a different module.
by linking shgetc with the stdio buffer logic, counting logic is
defered to buffer refill time, keeping the calls to shgetc fast and
light.
in the future, shgetc will also be useful for integrating the new
float code with scanf, which needs to not only count the characters
consumed, but also limit the number of characters read based on field
width specifiers.
shgetc may also become a useful tool for simplifying the integer
parsing code.
|