summaryrefslogtreecommitdiff
path: root/src/math/sqrt.c
blob: 5ba26559621357018857a49e40b5745aaca4cc51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#include <stdint.h>
#include <math.h>
#include "libm.h"
#include "sqrt_data.h"

#define FENV_SUPPORT 1

/* returns a*b*2^-32 - e, with error 0 <= e < 1.  */
static inline uint32_t mul32(uint32_t a, uint32_t b)
{
	return (uint64_t)a*b >> 32;
}

/* returns a*b*2^-64 - e, with error 0 <= e < 3.  */
static inline uint64_t mul64(uint64_t a, uint64_t b)
{
	uint64_t ahi = a>>32;
	uint64_t alo = a&0xffffffff;
	uint64_t bhi = b>>32;
	uint64_t blo = b&0xffffffff;
	return ahi*bhi + (ahi*blo >> 32) + (alo*bhi >> 32);
}

double sqrt(double x)
{
	uint64_t ix, top, m;

	/* special case handling.  */
	ix = asuint64(x);
	top = ix >> 52;
	if (predict_false(top - 0x001 >= 0x7ff - 0x001)) {
		/* x < 0x1p-1022 or inf or nan.  */
		if (ix * 2 == 0)
			return x;
		if (ix == 0x7ff0000000000000)
			return x;
		if (ix > 0x7ff0000000000000)
			return __math_invalid(x);
		/* x is subnormal, normalize it.  */
		ix = asuint64(x * 0x1p52);
		top = ix >> 52;
		top -= 52;
	}

	/* argument reduction:
	   x = 4^e m; with integer e, and m in [1, 4)
	   m: fixed point representation [2.62]
	   2^e is the exponent part of the result.  */
	int even = top & 1;
	m = (ix << 11) | 0x8000000000000000;
	if (even) m >>= 1;
	top = (top + 0x3ff) >> 1;

	/* approximate r ~ 1/sqrt(m) and s ~ sqrt(m) when m in [1,4)

	   initial estimate:
	   7bit table lookup (1bit exponent and 6bit significand).

	   iterative approximation:
	   using 2 goldschmidt iterations with 32bit int arithmetics
	   and a final iteration with 64bit int arithmetics.

	   details:

	   the relative error (e = r0 sqrt(m)-1) of a linear estimate
	   (r0 = a m + b) is |e| < 0.085955 ~ 0x1.6p-4 at best,
	   a table lookup is faster and needs one less iteration
	   6 bit lookup table (128b) gives |e| < 0x1.f9p-8
	   7 bit lookup table (256b) gives |e| < 0x1.fdp-9
	   for single and double prec 6bit is enough but for quad
	   prec 7bit is needed (or modified iterations). to avoid
	   one more iteration >=13bit table would be needed (16k).

	   a newton-raphson iteration for r is
	     w = r*r
	     u = 3 - m*w
	     r = r*u/2
	   can use a goldschmidt iteration for s at the end or
	     s = m*r

	   first goldschmidt iteration is
	     s = m*r
	     u = 3 - s*r
	     r = r*u/2
	     s = s*u/2
	   next goldschmidt iteration is
	     u = 3 - s*r
	     r = r*u/2
	     s = s*u/2
	   and at the end r is not computed only s.

	   they use the same amount of operations and converge at the
	   same quadratic rate, i.e. if
	     r1 sqrt(m) - 1 = e, then
	     r2 sqrt(m) - 1 = -3/2 e^2 - 1/2 e^3
	   the advantage of goldschmidt is that the mul for s and r
	   are independent (computed in parallel), however it is not
	   "self synchronizing": it only uses the input m in the
	   first iteration so rounding errors accumulate. at the end
	   or when switching to larger precision arithmetics rounding
	   errors dominate so the first iteration should be used.

	   the fixed point representations are
	     m: 2.30 r: 0.32, s: 2.30, d: 2.30, u: 2.30, three: 2.30
	   and after switching to 64 bit
	     m: 2.62 r: 0.64, s: 2.62, d: 2.62, u: 2.62, three: 2.62  */

	static const uint64_t three = 0xc0000000;
	uint64_t r, s, d, u, i;

	i = (ix >> 46) % 128;
	r = (uint32_t)__rsqrt_tab[i] << 16;
	/* |r sqrt(m) - 1| < 0x1.fdp-9 */
	s = mul32(m>>32, r);
	/* |s/sqrt(m) - 1| < 0x1.fdp-9 */
	d = mul32(s, r);
	u = three - d;
	r = mul32(r, u) << 1;
	/* |r sqrt(m) - 1| < 0x1.7bp-16 */
	s = mul32(s, u) << 1;
	/* |s/sqrt(m) - 1| < 0x1.7bp-16 */
	d = mul32(s, r);
	u = three - d;
	r = mul32(r, u) << 1;
	/* |r sqrt(m) - 1| < 0x1.3704p-29 (measured worst-case) */
	r = r << 32;
	s = mul64(m, r);
	d = mul64(s, r);
	u = (three<<32) - d;
	s = mul64(s, u);  /* repr: 3.61 */
	/* -0x1p-57 < s - sqrt(m) < 0x1.8001p-61 */
	s = (s - 2) >> 9; /* repr: 12.52 */
	/* -0x1.09p-52 < s - sqrt(m) < -0x1.fffcp-63 */

	/* s < sqrt(m) < s + 0x1.09p-52,
	   compute nearest rounded result:
	   the nearest result to 52 bits is either s or s+0x1p-52,
	   we can decide by comparing (2^52 s + 0.5)^2 to 2^104 m.  */
	uint64_t d0, d1, d2;
	double y, t;
	d0 = (m << 42) - s*s;
	d1 = s - d0;
	d2 = d1 + s + 1;
	s += d1 >> 63;
	s &= 0x000fffffffffffff;
	s |= top << 52;
	y = asdouble(s);
	if (FENV_SUPPORT) {
		/* handle rounding modes and inexact exception:
		   only (s+1)^2 == 2^42 m case is exact otherwise
		   add a tiny value to cause the fenv effects.  */
		uint64_t tiny = predict_false(d2==0) ? 0 : 0x0010000000000000;
		tiny |= (d1^d2) & 0x8000000000000000;
		t = asdouble(tiny);
		y = eval_as_double(y + t);
	}
	return y;
}