/* origin: FreeBSD /usr/src/lib/msun/src/e_fmodl.c */
/*-
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double fmodl(long double x, long double y)
{
return fmod(x, y);
}
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
#define BIAS (LDBL_MAX_EXP - 1)
#if LDBL_MANL_SIZE > 32
typedef uint64_t manl_t;
#else
typedef uint32_t manl_t;
#endif
#if LDBL_MANH_SIZE > 32
typedef uint64_t manh_t;
#else
typedef uint32_t manh_t;
#endif
/*
* These macros add and remove an explicit integer bit in front of the
* fractional mantissa, if the architecture doesn't have such a bit by
* default already.
*/
#ifdef LDBL_IMPLICIT_NBIT
#define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE))
#define HFRAC_BITS LDBL_MANH_SIZE
#else
#define SET_NBIT(hx) (hx)
#define HFRAC_BITS (LDBL_MANH_SIZE - 1)
#endif
#define MANL_SHIFT (LDBL_MANL_SIZE - 1)
static const long double Zero[] = {0.0, -0.0,};
/*
* fmodl(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*
* Assumptions:
* - The low part of the mantissa fits in a manl_t exactly.
* - The high part of the mantissa fits in an int64_t with enough room
* for an explicit integer bit in front of the fractional bits.
*/
long double fmodl(long double x, long double y)
{
union IEEEl2bits ux, uy;
int64_t hx,hz; /* We need a carry bit even if LDBL_MANH_SIZE is 32. */
manh_t hy;
manl_t lx,ly,lz;
int ix,iy,n,sx;
ux.e = x;
uy.e = y;
sx = ux.bits.sign;
/* purge off exception values */
if ((uy.bits.exp|uy.bits.manh|uy.bits.manl) == 0 || /* y=0 */
ux.bits.exp == BIAS + LDBL_MAX_EXP || /* or x not finite */
(uy.bits.exp == BIAS + LDBL_MAX_EXP &&
((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl) != 0)) /* or y is NaN */
return (x*y)/(x*y);
if (ux.bits.exp <= uy.bits.exp) {
if (ux.bits.exp < uy.bits.exp ||
(ux.bits.manh<=uy.bits.manh &&
(ux.bits.manh<uy.bits.manh ||
ux.bits.manl<uy.bits.manl))) /* |x|<|y| return x or x-y */
return x;
if (ux.bits.manh==uy.bits.manh && ux.bits.manl==uy.bits.manl)
return Zero[sx]; /* |x| = |y| return x*0 */
}
/* determine ix = ilogb(x) */
if (ux.bits.exp == 0) { /* subnormal x */
ux.e *= 0x1.0p512;
ix = ux.bits.exp - (BIAS + 512);
} else {
ix = ux.bits.exp - BIAS;
}
/* determine iy = ilogb(y) */
if (uy.bits.exp == 0) { /* subnormal y */
uy.e *= 0x1.0p512;
iy = uy.bits.exp - (BIAS + 512);
} else {
iy = uy.bits.exp - BIAS;
}
/* set up {hx,lx}, {hy,ly} and align y to x */
hx = SET_NBIT(ux.bits.manh);
hy = SET_NBIT(uy.bits.manh);
lx = ux.bits.manl;
ly = uy.bits.manl;
/* fix point fmod */
n = ix - iy;
while (n--) {
hz = hx-hy;
lz = lx-ly;
if (lx < ly)
hz -= 1;
if (hz < 0) {
hx = hx+hx+(lx>>MANL_SHIFT);
lx = lx+lx;
} else {
if ((hz|lz)==0) /* return sign(x)*0 */
return Zero[sx];
hx = hz+hz+(lz>>MANL_SHIFT);
lx = lz+lz;
}
}
hz = hx-hy;
lz = lx-ly;
if (lx < ly)
hz -= 1;
if (hz >= 0) {
hx = hz;
lx = lz;
}
/* convert back to floating value and restore the sign */
if ((hx|lx) == 0) /* return sign(x)*0 */
return Zero[sx];
while (hx < (1ULL<<HFRAC_BITS)) { /* normalize x */
hx = hx+hx+(lx>>MANL_SHIFT);
lx = lx+lx;
iy -= 1;
}
ux.bits.manh = hx; /* The mantissa is truncated here if needed. */
ux.bits.manl = lx;
if (iy < LDBL_MIN_EXP) {
ux.bits.exp = iy + (BIAS + 512);
ux.e *= 0x1p-512;
} else {
ux.bits.exp = iy + BIAS;
}
return ux.e; /* exact output */
}
#endif