/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#define _GNU_SOURCE
#include "libm.h"
float jnf(int n, float x)
{
int32_t i,hx,ix, sgn;
float a, b, temp, di;
float z, w;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
GET_FLOAT_WORD(hx, x);
ix = 0x7fffffff & hx;
/* if J(n,NaN) is NaN */
if (ix > 0x7f800000)
return x+x;
if (n < 0) {
n = -n;
x = -x;
hx ^= 0x80000000;
}
if (n == 0) return j0f(x);
if (n == 1) return j1f(x);
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
x = fabsf(x);
if (ix == 0 || ix >= 0x7f800000) /* if x is 0 or inf */
b = 0.0f;
else if((float)n <= x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
a = j0f(x);
b = j1f(x);
for (i=1; i<n; i++){
temp = b;
b = b*((float)(i+i)/x) - a; /* avoid underflow */
a = temp;
}
} else {
if (ix < 0x30800000) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if (n > 33) /* underflow */
b = 0.0f;
else {
temp = 0.5f * x;
b = temp;
for (a=1.0f,i=2; i<=n; i++) {
a *= (float)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
float t,v;
float q0,q1,h,tmp;
int32_t k,m;
w = (n+n)/x;
h = 2.0f/x;
z = w+h;
q0 = w;
q1 = w*z - 1.0f;
k = 1;
while (q1 < 1.0e9f) {
k += 1;
z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
m = n+n;
for (t=0.0f, i = 2*(n+k); i>=m; i -= 2)
t = 1.0f/(i/x-t);
a = t;
b = 1.0f;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
v = 2.0f/x;
tmp = tmp*logf(fabsf(v*tmp));
if (tmp < 88.721679688f) {
for (i=n-1,di=(float)(i+i); i>0; i--) {
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= 2.0f;
}
} else {
for (i=n-1,di=(float)(i+i); i>0; i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= 2.0f;
/* scale b to avoid spurious overflow */
if (b > 1e10f) {
a /= b;
t /= b;
b = 1.0f;
}
}
}
z = j0f(x);
w = j1f(x);
if (fabsf(z) >= fabsf(w))
b = t*z/b;
else
b = t*w/a;
}
}
if (sgn == 1) return -b;
return b;
}
float ynf(int n, float x)
{
int32_t i,hx,ix,ib;
int32_t sign;
float a, b, temp;
GET_FLOAT_WORD(hx, x);
ix = 0x7fffffff & hx;
/* if Y(n,NaN) is NaN */
if (ix > 0x7f800000)
return x+x;
if (ix == 0)
return -1.0f/0.0f;
if (hx < 0)
return 0.0f/0.0f;
sign = 1;
if (n < 0) {
n = -n;
sign = 1 - ((n&1)<<1);
}
if (n == 0)
return y0f(x);
if (n == 1)
return sign*y1f(x);
if (ix == 0x7f800000)
return 0.0f;
a = y0f(x);
b = y1f(x);
/* quit if b is -inf */
GET_FLOAT_WORD(ib,b);
for (i = 1; i < n && ib != 0xff800000; i++){
temp = b;
b = ((float)(i+i)/x)*b - a;
GET_FLOAT_WORD(ib, b);
a = temp;
}
if (sign > 0)
return b;
return -b;
}