/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_powl.c */ /* * Copyright (c) 2008 Stephen L. Moshier * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* powl.c * * Power function, long double precision * * * SYNOPSIS: * * long double x, y, z, powl(); * * z = powl( x, y ); * * * DESCRIPTION: * * Computes x raised to the yth power. Analytically, * * x**y = exp( y log(x) ). * * Following Cody and Waite, this program uses a lookup table * of 2**-i/32 and pseudo extended precision arithmetic to * obtain several extra bits of accuracy in both the logarithm * and the exponential. * * * ACCURACY: * * The relative error of pow(x,y) can be estimated * by y dl ln(2), where dl is the absolute error of * the internally computed base 2 logarithm. At the ends * of the approximation interval the logarithm equal 1/32 * and its relative error is about 1 lsb = 1.1e-19. Hence * the predicted relative error in the result is 2.3e-21 y . * * Relative error: * arithmetic domain # trials peak rms * * IEEE +-1000 40000 2.8e-18 3.7e-19 * .001 < x < 1000, with log(x) uniformly distributed. * -1000 < y < 1000, y uniformly distributed. * * IEEE 0,8700 60000 6.5e-18 1.0e-18 * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed. * * * ERROR MESSAGES: * * message condition value returned * pow overflow x**y > MAXNUM INFINITY * pow underflow x**y < 1/MAXNUM 0.0 * pow domain x<0 and y noninteger 0.0 * */ #include "libm.h" #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 long double powl(long double x, long double y) { return pow(x, y); } #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 /* Table size */ #define NXT 32 /* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z) * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1 */ static const long double P[] = { 8.3319510773868690346226E-4L, 4.9000050881978028599627E-1L, 1.7500123722550302671919E0L, 1.4000100839971580279335E0L, }; static const long double Q[] = { /* 1.0000000000000000000000E0L,*/ 5.2500282295834889175431E0L, 8.4000598057587009834666E0L, 4.2000302519914740834728E0L, }; /* A[i] = 2^(-i/32), rounded to IEEE long double precision. * If i is even, A[i] + B[i/2] gives additional accuracy. */ static const long double A[33] = { 1.0000000000000000000000E0L, 9.7857206208770013448287E-1L, 9.5760328069857364691013E-1L, 9.3708381705514995065011E-1L, 9.1700404320467123175367E-1L, 8.9735453750155359320742E-1L, 8.7812608018664974155474E-1L, 8.5930964906123895780165E-1L, 8.4089641525371454301892E-1L, 8.2287773907698242225554E-1L, 8.0524516597462715409607E-1L, 7.8799042255394324325455E-1L, 7.7110541270397041179298E-1L, 7.5458221379671136985669E-1L, 7.3841307296974965571198E-1L, 7.2259040348852331001267E-1L, 7.0710678118654752438189E-1L, 6.9195494098191597746178E-1L, 6.7712777346844636413344E-1L, 6.6261832157987064729696E-1L, 6.4841977732550483296079E-1L, 6.3452547859586661129850E-1L, 6.2092890603674202431705E-1L, 6.0762367999023443907803E-1L, 5.9460355750136053334378E-1L, 5.8186242938878875689693E-1L, 5.6939431737834582684856E-1L, 5.5719337129794626814472E-1L, 5.4525386633262882960438E-1L, 5.3357020033841180906486E-1L, 5.2213689121370692017331E-1L, 5.1094857432705833910408E-1L, 5.0000000000000000000000E-1L, }; static const long double B[17] = { 0.0000000000000000000000E0L, 2.6176170809902549338711E-20L, -1.0126791927256478897086E-20L, 1.3438228172316276937655E-21L, 1.2207982955417546912101E-20L, -6.3084814358060867200133E-21L, 1.3164426894366316434230E-20L, -1.8527916071632873716786E-20L, 1.8950325588932570796551E-20L, 1.5564775779538780478155E-20L, 6.0859793637556860974380E-21L, -2.0208749253662532228949E-20L, 1.4966292219224761844552E-20L, 3.3540909728056476875639E-21L, -8.6987564101742849540743E-22L, -1.2327176863327626135542E-20L, 0.0000000000000000000000E0L, }; /* 2^x = 1 + x P(x), * on the interval -1/32 <= x <= 0 */ static const long double R[] = { 1.5089970579127659901157E-5L, 1.5402715328927013076125E-4L, 1.3333556028915671091390E-3L, 9.6181291046036762031786E-3L, 5.5504108664798463044015E-2L, 2.4022650695910062854352E-1L, 6.9314718055994530931447E-1L, }; #define MEXP (NXT*16384.0L) /* The following if denormal numbers are supported, else -MEXP: */ #define MNEXP (-NXT*(16384.0L+64.0L)) /* log2(e) - 1 */ #define LOG2EA 0.44269504088896340735992L #define F W #define Fa Wa #define Fb Wb #define G W #define Ga Wa #define Gb u #define H W #define Ha Wb #define Hb Wb static const long double MAXLOGL = 1.1356523406294143949492E4L; static const long double MINLOGL = -1.13994985314888605586758E4L; static const long double LOGE2L = 6.9314718055994530941723E-1L; static const long double huge = 0x1p10000L; /* XXX Prevent gcc from erroneously constant folding this. */ static const volatile long double twom10000 = 0x1p-10000L; static long double reducl(long double); static long double powil(long double, int); long double powl(long double x, long double y) { /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */ int i, nflg, iyflg, yoddint; long e; volatile long double z=0; long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0; /* make sure no invalid exception is raised by nan comparision */ if (isnan(x)) { if (!isnan(y) && y == 0.0) return 1.0; return x; } if (isnan(y)) { if (x == 1.0) return 1.0; return y; } if (x == 1.0) return 1.0; /* 1**y = 1, even if y is nan */ if (x == -1.0 && !isfinite(y)) return 1.0; /* -1**inf = 1 */ if (y == 0.0) return 1.0; /* x**0 = 1, even if x is nan */ if (y == 1.0) return x; if (y >= LDBL_MAX) { if (x > 1.0 || x < -1.0) return INFINITY; if (x != 0.0) return 0.0; } if (y <= -LDBL_MAX) { if (x > 1.0 || x < -1.0) return 0.0; if (x != 0.0 || y == -INFINITY) return INFINITY; } if (x >= LDBL_MAX) { if (y > 0.0) return INFINITY; return 0.0; } w = floorl(y); /* Set iyflg to 1 if y is an integer. */ iyflg = 0; if (w == y) iyflg = 1; /* Test for odd integer y. */ yoddint = 0; if (iyflg) { ya = fabsl(y); ya = floorl(0.5 * ya); yb = 0.5 * fabsl(w); if( ya != yb ) yoddint = 1; } if (x <= -LDBL_MAX) { if (y > 0.0) { if (yoddint) return -INFINITY; return INFINITY; } if (y < 0.0) { if (yoddint) return -0.0; return 0.0; } } nflg = 0; /* (x<0)**(odd int) */ if (x <= 0.0) { if (x == 0.0) { if (y < 0.0) { if (signbit(x) && yoddint) /* (-0.0)**(-odd int) = -inf, divbyzero */ return -1.0/0.0; /* (+-0.0)**(negative) = inf, divbyzero */ return 1.0/0.0; } if (signbit(x) && yoddint) return -0.0; return 0.0; } if (iyflg == 0) return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */ /* (x<0)**(integer) */ if (yoddint) nflg = 1; /* negate result */ x = -x; } /* (+integer)**(integer) */ if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) { w = powil(x, (int)y); return nflg ? -w : w; } /* separate significand from exponent */ x = frexpl(x, &i); e = i; /* find significand in antilog table A[] */ i = 1; if (x <= A[17]) i = 17; if (x <= A[i+8]) i += 8; if (x <= A[i+4]) i += 4; if (x <= A[i+2]) i += 2; if (x >= A[1]) i = -1; i += 1; /* Find (x - A[i])/A[i] * in order to compute log(x/A[i]): * * log(x) = log( a x/a ) = log(a) + log(x/a) * * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a */ x -= A[i]; x -= B[i/2]; x /= A[i]; /* rational approximation for log(1+v): * * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) */ z = x*x; w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3)); w = w - 0.5*z; /* Convert to base 2 logarithm: * multiply by log2(e) = 1 + LOG2EA */ z = LOG2EA * w; z += w; z += LOG2EA * x; z += x; /* Compute exponent term of the base 2 logarithm. */ w = -i; w /= NXT; w += e; /* Now base 2 log of x is w + z. */ /* Multiply base 2 log by y, in extended precision. */ /* separate y into large part ya * and small part yb less than 1/NXT */ ya = reducl(y); yb = y - ya; /* (w+z)(ya+yb) * = w*ya + w*yb + z*y */ F = z * y + w * yb; Fa = reducl(F); Fb = F - Fa; G = Fa + w * ya; Ga = reducl(G); Gb = G - Ga; H = Fb + Gb; Ha = reducl(H); w = (Ga + Ha) * NXT; /* Test the power of 2 for overflow */ if (w > MEXP) return huge * huge; /* overflow */ if (w < MNEXP) return twom10000 * twom10000; /* underflow */ e = w; Hb = H - Ha; if (Hb > 0.0) { e += 1; Hb -= 1.0/NXT; /*0.0625L;*/ } /* Now the product y * log2(x) = Hb + e/NXT. * * Compute base 2 exponential of Hb, * where -0.0625 <= Hb <= 0. */ z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */ /* Express e/NXT as an integer plus a negative number of (1/NXT)ths. * Find lookup table entry for the fractional power of 2. */ if (e < 0) i = 0; else i = 1; i = e/NXT + i; e = NXT*i - e; w = A[e]; z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ z = z + w; z = scalbnl(z, i); /* multiply by integer power of 2 */ if (nflg) z = -z; return z; } /* Find a multiple of 1/NXT that is within 1/NXT of x. */ static long double reducl(long double x) { long double t; t = x * NXT; t = floorl(t); t = t / NXT; return t; } /* * Positive real raised to integer power, long double precision * * * SYNOPSIS: * * long double x, y, powil(); * int n; * * y = powil( x, n ); * * * DESCRIPTION: * * Returns argument x>0 raised to the nth power. * The routine efficiently decomposes n as a sum of powers of * two. The desired power is a product of two-to-the-kth * powers of x. Thus to compute the 32767 power of x requires * 28 multiplications instead of 32767 multiplications. * * * ACCURACY: * * Relative error: * arithmetic x domain n domain # trials peak rms * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18 * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18 * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17 * * Returns MAXNUM on overflow, zero on underflow. */ static long double powil(long double x, int nn) { long double ww, y; long double s; int n, e, sign, lx; if (nn == 0) return 1.0; if (nn < 0) { sign = -1; n = -nn; } else { sign = 1; n = nn; } /* Overflow detection */ /* Calculate approximate logarithm of answer */ s = x; s = frexpl( s, &lx); e = (lx - 1)*n; if ((e == 0) || (e > 64) || (e < -64)) { s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L); s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L; } else { s = LOGE2L * e; } if (s > MAXLOGL) return huge * huge; /* overflow */ if (s < MINLOGL) return twom10000 * twom10000; /* underflow */ /* Handle tiny denormal answer, but with less accuracy * since roundoff error in 1.0/x will be amplified. * The precise demarcation should be the gradual underflow threshold. */ if (s < -MAXLOGL+2.0) { x = 1.0/x; sign = -sign; } /* First bit of the power */ if (n & 1) y = x; else y = 1.0; ww = x; n >>= 1; while (n) { ww = ww * ww; /* arg to the 2-to-the-kth power */ if (n & 1) /* if that bit is set, then include in product */ y *= ww; n >>= 1; } if (sign < 0) y = 1.0/y; return y; } #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 // TODO: broken implementation to make things compile long double powl(long double x, long double y) { return pow(x, y); } #endif