1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
#include "pthread_impl.h"
/*
* struct waiter
*
* Waiter objects have automatic storage on the waiting thread, and
* are used in building a linked list representing waiters currently
* waiting on the condition variable or a group of waiters woken
* together by a broadcast or signal; in the case of signal, this is a
* degenerate list of one member.
*
* Waiter lists attached to the condition variable itself are
* protected by the lock on the cv. Detached waiter lists are never
* modified again, but can only be traversed in reverse order, and are
* protected by the "barrier" locks in each node, which are unlocked
* in turn to control wake order.
*
* Since process-shared cond var semantics do not necessarily allow
* one thread to see another's automatic storage (they may be in
* different processes), the waiter list is not used for the
* process-shared case, but the structure is still used to store data
* needed by the cancellation cleanup handler.
*/
struct waiter {
struct waiter *prev, *next;
volatile int state, barrier;
volatile int *notify;
};
/* Self-synchronized-destruction-safe lock functions */
static inline void lock(volatile int *l)
{
if (a_cas(l, 0, 1)) {
a_cas(l, 1, 2);
do __wait(l, 0, 2, 1);
while (a_cas(l, 0, 2));
}
}
static inline void unlock(volatile int *l)
{
if (a_swap(l, 0)==2)
__wake(l, 1, 1);
}
static inline void unlock_requeue(volatile int *l, volatile int *r, int w)
{
a_store(l, 0);
if (w) __wake(l, 1, 1);
else __syscall(SYS_futex, l, FUTEX_REQUEUE|FUTEX_PRIVATE, 0, 1, r) != -ENOSYS
|| __syscall(SYS_futex, l, FUTEX_REQUEUE, 0, 1, r);
}
enum {
WAITING,
SIGNALED,
LEAVING,
};
int __pthread_cond_timedwait(pthread_cond_t *restrict c, pthread_mutex_t *restrict m, const struct timespec *restrict ts)
{
struct waiter node = { 0 };
int e, seq, clock = c->_c_clock, cs, shared=0, oldstate, tmp;
volatile int *fut;
if ((m->_m_type&15) && (m->_m_lock&INT_MAX) != __pthread_self()->tid)
return EPERM;
if (ts && ts->tv_nsec >= 1000000000UL)
return EINVAL;
__pthread_testcancel();
if (c->_c_shared) {
shared = 1;
fut = &c->_c_seq;
seq = c->_c_seq;
a_inc(&c->_c_waiters);
} else {
lock(&c->_c_lock);
seq = node.barrier = 2;
fut = &node.barrier;
node.state = WAITING;
node.next = c->_c_head;
c->_c_head = &node;
if (!c->_c_tail) c->_c_tail = &node;
else node.next->prev = &node;
unlock(&c->_c_lock);
}
__pthread_mutex_unlock(m);
__pthread_setcancelstate(PTHREAD_CANCEL_MASKED, &cs);
if (cs == PTHREAD_CANCEL_DISABLE) __pthread_setcancelstate(cs, 0);
do e = __timedwait_cp(fut, seq, clock, ts, !shared);
while (*fut==seq && (!e || e==EINTR));
if (e == EINTR) e = 0;
if (shared) {
/* Suppress cancellation if a signal was potentially
* consumed; this is a legitimate form of spurious
* wake even if not. */
if (e == ECANCELED && c->_c_seq != seq) e = 0;
if (a_fetch_add(&c->_c_waiters, -1) == -0x7fffffff)
__wake(&c->_c_waiters, 1, 0);
oldstate = WAITING;
goto relock;
}
oldstate = a_cas(&node.state, WAITING, LEAVING);
if (oldstate == WAITING) {
/* Access to cv object is valid because this waiter was not
* yet signaled and a new signal/broadcast cannot return
* after seeing a LEAVING waiter without getting notified
* via the futex notify below. */
lock(&c->_c_lock);
if (c->_c_head == &node) c->_c_head = node.next;
else if (node.prev) node.prev->next = node.next;
if (c->_c_tail == &node) c->_c_tail = node.prev;
else if (node.next) node.next->prev = node.prev;
unlock(&c->_c_lock);
if (node.notify) {
if (a_fetch_add(node.notify, -1)==1)
__wake(node.notify, 1, 1);
}
} else {
/* Lock barrier first to control wake order. */
lock(&node.barrier);
}
relock:
/* Errors locking the mutex override any existing error or
* cancellation, since the caller must see them to know the
* state of the mutex. */
if ((tmp = pthread_mutex_lock(m))) e = tmp;
if (oldstate == WAITING) goto done;
if (!node.next) a_inc(&m->_m_waiters);
/* Unlock the barrier that's holding back the next waiter, and
* either wake it or requeue it to the mutex. */
if (node.prev)
unlock_requeue(&node.prev->barrier, &m->_m_lock, m->_m_type & 128);
else
a_dec(&m->_m_waiters);
/* Since a signal was consumed, cancellation is not permitted. */
if (e == ECANCELED) e = 0;
done:
__pthread_setcancelstate(cs, 0);
if (e == ECANCELED) {
__pthread_testcancel();
__pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0);
}
return e;
}
int __private_cond_signal(pthread_cond_t *c, int n)
{
struct waiter *p, *first=0;
volatile int ref = 0;
int cur;
lock(&c->_c_lock);
for (p=c->_c_tail; n && p; p=p->prev) {
if (a_cas(&p->state, WAITING, SIGNALED) != WAITING) {
ref++;
p->notify = &ref;
} else {
n--;
if (!first) first=p;
}
}
/* Split the list, leaving any remainder on the cv. */
if (p) {
if (p->next) p->next->prev = 0;
p->next = 0;
} else {
c->_c_head = 0;
}
c->_c_tail = p;
unlock(&c->_c_lock);
/* Wait for any waiters in the LEAVING state to remove
* themselves from the list before returning or allowing
* signaled threads to proceed. */
while ((cur = ref)) __wait(&ref, 0, cur, 1);
/* Allow first signaled waiter, if any, to proceed. */
if (first) unlock(&first->barrier);
return 0;
}
weak_alias(__pthread_cond_timedwait, pthread_cond_timedwait);
|