# exp(x) = 2^hi + 2^hi (2^lo - 1)
# where hi+lo = log2e*x with 128bit precision
# exact log2e*x calculation depends on nearest rounding mode
# using the exact multiplication method of Dekker and Veltkamp
.global expl
.type expl,@function
expl:
fldt 4(%esp)
# interesting case: 0x1p-32 <= |x| < 16384
# check if (exponent|0x8000) is in [0xbfff-32, 0xbfff+13]
mov 12(%esp), %ax
or $0x8000, %ax
sub $0xbfdf, %ax
cmp $45, %ax
jbe 2f
test %ax, %ax
fld1
js 1f
# if |x|>=0x1p14 or nan return 2^trunc(x)
fscale
fstp %st(1)
ret
# if |x|<0x1p-32 return 1+x
1: faddp
ret
# should be 0x1.71547652b82fe178p0L == 0x3fff b8aa3b29 5c17f0bc
# it will be wrong on non-nearest rounding mode
2: fldl2e
subl $44, %esp
# hi = log2e_hi*x
# 2^hi = exp2l(hi)
fmul %st(1),%st
fld %st(0)
fstpt (%esp)
fstpt 16(%esp)
fstpt 32(%esp)
.hidden __exp2l
call __exp2l
# if 2^hi == inf return 2^hi
fld %st(0)
fstpt (%esp)
cmpw $0x7fff, 8(%esp)
je 1f
fldt 32(%esp)
fldt 16(%esp)
# fpu stack: 2^hi x hi
# exact mult: x*log2e
fld %st(1)
# c = 0x1p32+1
pushl $0x41f00000
pushl $0x00100000
fldl (%esp)
# xh = x - c*x + c*x
# xl = x - xh
fmulp
fld %st(2)
fsub %st(1), %st
faddp
fld %st(2)
fsub %st(1), %st
# yh = log2e_hi - c*log2e_hi + c*log2e_hi
pushl $0x3ff71547
pushl $0x65200000
fldl (%esp)
# fpu stack: 2^hi x hi xh xl yh
# lo = hi - xh*yh + xl*yh
fld %st(2)
fmul %st(1), %st
fsubp %st, %st(4)
fmul %st(1), %st
faddp %st, %st(3)
# yl = log2e_hi - yh
pushl $0x3de705fc
pushl $0x2f000000
fldl (%esp)
# fpu stack: 2^hi x lo xh xl yl
# lo += xh*yl + xl*yl
fmul %st, %st(2)
fmulp %st, %st(1)
fxch %st(2)
faddp
faddp
# log2e_lo
pushl $0xbfbe
pushl $0x82f0025f
pushl $0x2dc582ee
fldt (%esp)
addl $36,%esp
# fpu stack: 2^hi x lo log2e_lo
# lo += log2e_lo*x
# return 2^hi + 2^hi (2^lo - 1)
fmulp %st, %st(2)
faddp
f2xm1
fmul %st(1), %st
faddp
1: addl $44, %esp
ret