diff options
author | Rich Felker <dalias@aerifal.cx> | 2020-06-02 17:37:14 -0400 |
---|---|---|
committer | Rich Felker <dalias@aerifal.cx> | 2020-06-02 19:39:37 -0400 |
commit | 3e16313f8fe2ed143ae0267fd79d63014c24779f (patch) | |
tree | 6dd7400ddc4bd53822af62cc82ac43d4ce9bffe6 /src/linux/arch_prctl.c | |
parent | c40157d87ef0b585a90ff5230fdf69cddc824d7f (diff) | |
download | musl-3e16313f8fe2ed143ae0267fd79d63014c24779f.tar.gz |
fix unbounded heap expansion race in malloc
this has been a longstanding issue reported many times over the years,
with it becoming increasingly clear that it could be hit in practice.
under concurrent malloc and free from multiple threads, it's possible
to hit usage patterns where unbounded amounts of new memory are
obtained via brk/mmap despite the total nominal usage being small and
bounded.
the underlying cause is that, as a fundamental consequence of keeping
locking as fine-grained as possible, the state where free has unbinned
an already-free chunk to merge it with a newly-freed one, but has not
yet re-binned the combined chunk, is exposed to other threads. this is
bad even with small chunks, and leads to suboptimal use of memory, but
where it really blows up is where the already-freed chunk in question
is the large free region "at the top of the heap". in this situation,
other threads momentarily see a state of having almost no free memory,
and conclude that they need to obtain more.
as far as I can tell there is no fix for this that does not harm
performance. the fix made here forces all split/merge of free chunks
to take place under a single lock, which also takes the place of the
old free_lock, being held at least momentarily at the time of free to
determine whether there are neighboring free chunks that need merging.
as a consequence, the pretrim, alloc_fwd, and alloc_rev operations no
longer make sense and are deleted. simplified merging now takes place
inline in free (__bin_chunk) and realloc.
as commented in the source, holding the split_merge_lock precludes any
chunk transition from in-use to free state. for the most part, it also
precludes change to chunk header sizes. however, __memalign may still
modify the sizes of an in-use chunk to split it into two in-use
chunks. arguably this should require holding the split_merge_lock, but
that would necessitate refactoring to expose it externally, which is a
mess. and it turns out not to be necessary, at least assuming the
existing sloppy memory model malloc has been using, because if free
(__bin_chunk) or realloc sees any unsynchronized change to the size,
it will also see the in-use bit being set, and thereby can't do
anything with the neighboring chunk that changed size.
Diffstat (limited to 'src/linux/arch_prctl.c')
0 files changed, 0 insertions, 0 deletions